3d Non-linear Evolution of a Magnetic Flux Tube in a Spherical Shell: Influence of Turbulent Convection and Associated Mean Flows

نویسنده

  • L. Jouve
چکیده

We present the first 3D MHD study in spherical geometry of the non-linear dynamical evolution of magnetic flux tubes in a turbulent rotating convection zone. These numerical simulations use the anelastic spherical harmonic (ASH) code. We seek to understand the mechanism of emergence of strong toroidal fields through a turbulent layer from the base of the solar convection zone to the surface as active regions. To do so, we study numerically the rise of magnetic toroidal flux ropes from the base of a modelled convection zone up to the top of our computational domain where bipolar patches are formed. We compare the dynamical behaviour of flux tubes in a fully convective shell possessing self-consistently generated mean flows such as meridional circulation and differential rotation, with reference calculations done in a quiet isentropic zone. We find that two parameters influence the tubes during their rise through the convection zone: the initial field strength and amount of twist, thus confirming previous findings in Cartesian geometry. Further, when the tube is sufficiently strong with respect to the equipartition field, it rises almost radially independently of the initial latitude (either low or high). By contrast, weaker field cases indicate that downflows and upflows control the rising velocity of particular regions of the rope and could in principle favour the emergence of flux through Ω-loop structures. For these latter cases, we focus on the orientation of bipolar patches and find that sufficiently arched structures are able to create bipolar regions with a predominantly East-West orientation. Meridional flow seems to determine the trajectory of the magnetic rope when the field strength has been significantly reduced near the top of the domain. Appearance of local magnetic field also feeds back on the horizontal flows thus perturbing the meridional circulation via Maxwell stresses. Finally differential rotation makes it more difficult for tubes introduced at low latitudes to reach the top of the domain. Subject headings: convection, MHD, Method: numerical, Sun: interior, magnetic fields

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turbulent Mixed Convection of a Nanofluid in a Horizontal Circular Tube with Non-Uniform Wall Heat Flux Using a Two-Phase Approach

In this paper, Turbulent mixed convective heat transfer of water and Al2O3 nanofluid has been numerically studied in a horizontal tube under non-uniform heat flux on the upper wall and insulation in the lower wall using mixture model. For the discretization of governing equations, the second-order upstream difference scheme and finite volume method were used. The coupling of pressure and veloci...

متن کامل

Investigation of the Effect of Nanoparticles Mean Diameter on Turbulent Mixed Convection of a Nanofluid in a Horizontal Curved tube Using a Two Phase Approach

Turbulent mixed convection of a nanofluid (water/Al2O3, Φ=.02) has been studied numerically. Two-phase mixture model has been used to investigate the effects of nanoparticles mean diameter on the flow parameters. Nanoparticles distribution at the tube cross section shows that the particles are uniformly dispersed. The non-uniformity of the particles distribution occurs in the case of large nano...

متن کامل

Magnetohydrodynamic Free Convection Flows with Thermal Memory over a Moving Vertical Plate in Porous Medium

The unsteady hydro-magnetic free convection flow with heat transfer of a linearly viscous, incompressible, electrically conducting fluid near a moving vertical plate with the constant heat is investigated. The flow domain is the porous half-space and a magnetic field of a variable direction is applied. The Caputo time-fractional derivative is employed in order to introduce a thermal flux consti...

متن کامل

On a transitional and turbulent natural convection in spherical shells

Laminar and turbulent natural convection inside concentric spherical shells with isothermal cold and hot boundaries is numerically investigated up to Rayleigh number values Ra 6 10 and Pr = 0.71. The study utilizes direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds averaged Navier– Stokes (RANS) approaches for investigation of the laminar, transitional and fully develop...

متن کامل

New Achievements in Fe3O4 Nanofluid Fully Developed Forced Convection Heat Transfer under the Effect of a Magnetic Field: An Experimental Study

Fe3O4 nanofluid fully developed forced convection inside a copper tube is empirically investigated under the effect of a magnetic field. All of the investigations are performed under laminar flow regime (670≤Re≤1700) and thermal boundary conditions of the tube with uniform thermal flux. The tube is under the effect of a magnetic field in certain points. This research aims to study the effect of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009